
Journal of Structural Geology 29 (2007) 1414e1416
www.elsevier.com/locate/jsg
Comment on ‘‘Basin inversion and fault reactivation in
laboratory experiments’’

John Wickham*

Department of Earth and Environmental Sciences, University of Texas at Arlington, 500 Yates, Arlington, TX 76019, USA

Received 30 January 2007; accepted 14 May 2007

Available online 21 May 2007

Abstract

A recent paper describing laboratory experiments on fault reactivation misinterprets the principles of scale models of physical systems by
using inconsistent dimensionless ratios that determine the correspondence between model and nature. For example the dimensionless stress ratio
is not consistent with the dimensionless time ratio. Moreover, consistent, independent fundamental ratios of mass, length and time cannot be
derived from the values of the variables and constants known in both the model and nature. Consequently, little information about the natural
system can be derived from the model.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Papers that attempt to model natural geological deforma-
tion sometimes misinterpret and misuse the principles of
scaling and conclude more than is warranted. The purpose
of this comment is to point out some of those misinterpreta-
tions in the recent paper by Del Ventisetti. et al. (2006).

During the early 1900s physicists were exploring the nature
of dynamically similar systems, dimensionless ratios and scale
invariant equations. In 1931, P.W. Bridgman’s book on Dimen-
sional Analysis summarized, refined and further developed the
theory and explicitly stated the principle of dynamic similarity
(Bridgman, 1931).

Dimensional analysis is based on the principle that any
complete mathematical equation describing a physical process
can be written as the product of the variables expressed as di-
mensionless ratios. If the variables involved in the physical

DOI of original article: 10.1016/j.jsg.2006.07.012.

* Tel.: þ1 817 272 3332; fax: þ1 817 272 2628.

E-mail address: wickham@uta.edu
0191-8141/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jsg.2007.05.002
process are known, then information about the nature of the
functional relationship can be obtained.

In the first half of the last century dimensional analysis and
scale modeling were important in understanding dynamically
complex systems that could not be solved analytically. With
the invention of digital computers and numerical methods
for solving partial differential equations, dimensional analysis
and scale modeling have lost much of their earlier importance.

In 1937, M.K. Hubbert published a paper on the theory of
scale models using a different approach than Bridgman’s.
Hubbert’s (1937) approach has dominated the thinking of struc-
tural geologists ever since. He began with a postulate for
dynamic similarity claiming that the ratios of the various kinds
of forces between the model and nature (F*¼ Fmodel/Fnature),
the masses (M*¼Mmodel/Mnature), and velocities
(V*¼ Vmodel/Vnature) all had to have the same values at corre-
sponding points in the model and natural system. Given that
starting point, the ratios of the fundamental units could be es-
tablished from which all the other ratios between the model
and nature, such as material properties, could be derived. The
fundamental units are independent of each other and define
the dimensions of all the variables that describe the system.
In mechanical systems, there are only three fundamental
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Table 1

All units are SI; symbols with an * are dimensionless ratios of the parameter in the first column (measured model value, column 2, divided by the estimated natural

value, column 3)

Parameter Measured model value Estimated natural value Model/nature ratio Symbol M, L, T dimensions

Brittle layer density (kg m�3) 1300 2600 0.5 r* M*L*�3

Brittle layer friction

coefficient (dimensionless)

0.8 0.8 1.0 m* None

Ductile layer density (kg m�3) 1060 2200 0.481818182 r* M*L*�3

Ductile layer viscosity (Pa s) 1.00Eþ 03 5.00Eþ 17 2E� 15 h* M*L*�1T*�1

Gravity (m s�2) 9.81 9.81 1 g* L*T*�2

Length (m) 0.01 1000 1.00E� 05 l* L*

Time (t, s) 3.60Eþ 03 1.30Eþ 13 2.77E� 10 t* T*

Rate (m s�1) 2.70E� 06 7.90E� 11 3.42Eþ 04 v* L*/T*

Strain rate (s�1) 6.55E� 04 1.93E� 13 3.40Eþ 09 3* T*�1

Lower case symbols in column 5 refer to the parameter in column 1. The upper case symbols in column 6 refer to the three fundamental units or dimensionless

ratios of mass (M*) length (L*) and time (T*) that characterize the parameter in column 1.Information in columns 1e4 comes from Table 2 and Appendix A in the

paper by Del Ventisetti et al. (2006).
independent units, and they are usually taken to be mass (M ),
length (L) and time (T ). Like the ratios of force, mass and
velocity, the ratios of the fundamental units must also have a
constant value at corresponding points throughout the systems
(for example F*¼M*L*T*�2 and V*¼ L*T*�1).

2. The problem

The problem with the models described by Del Ventisetti
et al. (2006, Table 2 and Appendix A) is that there is no con-
sistent set of dimensionless ratios that have constant values at
corresponding points relating the model to nature. As a result,
there can be no claim that the models have anything to do with
natural deformation.

In Appendix A, for example, the authors use length (l*),
density (r*) and gravity ( g*) to determine the stress ratio
(s*¼ l*r*g*). Once those three parameters have been
selected to define the scaling parameters, the fundamental di-
mensions M*, L* and T* have also been defined. But in Eqs.
(6) and (7) of Appendix A, the authors seem to use velocity
in the model (not gravity), the thickness of what appears to
be an undefined shear zone in the model (not L*), and the
strain rate in nature (not g* and l*) to find T*. Actually, I
found it difficult to tell what is happening in Eqs. (6) and
(7) because the explanation is incomplete.1

This problem of inconsistent scaling ratios can best be
shown by calculating the three fundamental ratios of mass,
length and time from the author’s five dimensionless ratios
of length (l*), viscosity (h*), density (r*), gravity ( g*), and
time (t*) determined from measurements of those parameters
in the model and estimates of those same parameters in nature;
these are reproduced here in Table 1 from Table 2 and Appen-
dix A in Del Ventisetti et al. (2006).

For the model to legitimately represent the natural process,
the dimensionless ratios of the fundamental units (M, L, T )
must all have the same value for each of the parameters that

1 For example one variable (gd) is described as shear strain when it should

be shear strain rate; another (Hd) is not defined at all and is presumably the

width of a shear zone; and, without further definition, velocity (v) has little

meaning in a deforming Newtonian fluid.
describe the physical system. In other words
r*¼ 0.5¼M*L*�3; h*¼ 2E� 15¼M*L*�1T*�1; v*¼ 3.42Eþ
04¼ L*/T*; etc.

Since there are three fundamental, independent dimension-
less ratios, it takes three of the five measured dimensionless
parameters to calculate them. So, any three combinations of
the five must give the same values of the fundamental ratios
if the model represents nature.

Tables 2e5 show four combinations of the five measured
dimensionless ratios. The values of the five measured dimen-
sionless parameters used in the experiments do not have con-
sistent fundamental ratios as shown in Tables 2e5. The time
ratio T*, varies by 14 orders of magnitude, M* by 42, and
L* by 15 depending on which three of the five parameters
are used.

Table 5 also illustrates what Hubbert pointed out in 1937:
if gravity cannot be neglected in the natural process, it is

Table 2

M*, L*, T* model ratios using l*, r* and t* (length, density and time)

T*¼ t* 2.77E� 10 From time ratio

M*¼ r*l*3 5.00E� 16 From density and length ratios

L*¼ l* 1.00E� 05 From length ratio

Table 3

M*, L*, T* model ratios using l*, r* and h* (length, density and viscosity)

T*¼ r*l*2/h* 2.41Eþ 04 From viscosity, mass and length ratios

M*¼ r*l*3 5.00E� 16 From density and length ratios

L*¼ l* 1.00E� 05 From length ratio

Table 4

M*, L*, T* model ratios using t*, r* and h* (time, density and viscosity)

T*¼ t* 2.77E� 10 From time ratio

M*¼ r*(t*h*/r*)1.5 5.83E� 37 From density and viscosity ratios

L*¼ (t*h*/r*)0.5 1.05E� 12 From viscosity, time and density ratios

Table 5

M*, L*, T* model ratios using t*, r* and g* (time, density and gravity)

T*¼ t* 2.77E� 10 From time ratio

M*¼ r*( g*t*2)3 2.25E� 58 From density, gravity and time ratios

L*¼ g*t*2 7.67E� 20 From gravity and time ratios
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impossible to find real materials that can be used in a table top
model that reproduces that process. Several researchers have
solved this problem by using a centrifuge to run models.

3. Conclusion

As a general rule for materials that are time dependent,
gravity cannot be neglected if there is a surface (topographic)
gradient or any other horizontal density gradient in the natural
system. How small those gradients need to be in order to be
neglected would depend on the system being modeled. In
the basin inversion system modeled by Del Ventisetti et al.
(2006), viscous materials with horizontal density gradients
seem to be a central feature in the deformation, so gravity
must be included in the scaling parameters. The authors do in-
clude gravity in calculating the stress ratio (s*), but fail to use
it when calculating time and rate ratios. So, either their time
ratio or the stress ratio is invalid.
Models using sand and clay are frequently used because the
deformation patterns often look similar to natural systems. I
suspect the reason for that similarity is that three important
variables (angles, strain and coefficients of friction) are dimen-
sionless. Dimensionless variables are probably very forgiving
and models that are not scaled may look realistic for that
reason. However, attempts to relate dimensional variables in
a model to natural systems with horizontal density gradients
are surely invalid without careful scaling that includes gravity.
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